Asymptotic analysis of random partitions ∗

نویسندگان

  • Zhonggen Su
  • Zhengyan Lin
چکیده

In this paper we aim to review some works on the asymptotic behaviors of random partitions. The focus is upon two basic probability models— uniform partitions and Plancherel partitions. One of fundamental results is the existence of limit shapes, which corresponds to the classic law of large numbers. The fluctuations around the limit shape are also considered; the well-known Gumbel distribution, Tracy-Widom distribution and normal distribution will be used to describe the asymptotic fluctuations at the edge and in the bulk of the spectrum of random partitions. The technique used in asymptotic analysis is the so-called poissonization and depoissonization method, a peculiar conditioning argument. We are content with describing some basic facts and remarkable results; no complete proof is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitions of rt(t, n) into parts

Szekeres proved, using complex analysis, an asymptotic formula for the number of partitions of n into at most k parts. Canfield discovered a simplification of the formula, and proved it without complex analysis. We re-prove the formula, in the asymptotic regime when k is at least a constant times √ n, by showing that it is equivalent to a local central limit theorem in Fristedt’s model for rand...

متن کامل

Normal Convergence for Random Partitions with Multiplicative Measures

Let Pn be the space of partitions of integer n ≥ 0, P the space of all partitions, and define a class of multiplicative measures induced by Fβ(z) = ∏ k(1 − zk)k β with β > −1. Based on limit shapes and other asymptotic properties studied by Vershik, we establish normal convergence for the size and parts of random partitions.

متن کامل

Analysis of Some New Partition Statistics

The study of partition statistics can be said to have begun with Erdős and Lehner [3] in 1941, who studied questions concerning the normal, resp. average value over all partitions of n of quantities such as the number of parts, the number of different part sizes, and the size of the largest part. To begin with, instead of looking at parts in partitions we will look at gaps, that is, at part siz...

متن کامل

Profiles of Large Combinatorial Structures

We derive limit laws for random combinatorial structures using singularity analysis of generating functions. We begin with a study of the Boltzmann samplers of Flajolet and collaborators, a useful method for generating large discrete structures at random which is useful both for providing intuition and conjecture and as a possible proof technique. We then apply generating functions and Boltzman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006